A Rough Energy Landscape to Describe Surface-Linked Antibody and Antigen Bond Formation
نویسندگان
چکیده
Antibodies and B cell receptors often bind their antigen at cell-cell interface while both molecular species are surface-bound, which impacts bond kinetics and function. Despite the description of complex energy landscapes for dissociation kinetics which may also result in significantly different association kinetics, surface-bound molecule (2D) association kinetics usually remain described by an on-rate due to crossing of a single free energy barrier, and few experimental works have measured association kinetics under conditions implying force and two-dimensional relative ligand-receptor motion. We use a new laminar flow chamber to measure 2D bond formation with systematic variation of the distribution of encounter durations between antigen and antibody, in a range from 0.1 to 10 ms. Under physiologically relevant forces, 2D association is 100-fold slower than 3D association as studied by surface plasmon resonance assays. Supported by brownian dynamics simulations, our results show that a minimal encounter duration is required for 2D association; an energy landscape featuring a rough initial part might be a reasonable way of accounting for this. By systematically varying the temperature of our experiments, we evaluate roughness at 2kBT, in the range of previously proposed rough parts of landscapes models during dissociation.
منابع مشابه
Biomolecule association rates do not provide a complete description of bond formation.
The efficiency of many cell-surface receptors is dependent on the rate of binding soluble or surface-attached ligands. Much effort was exerted to measure association rates between soluble molecules (three-dimensional k(on)) and, more recently, between surface-attached molecules (two-dimensional [2D] k(on)). According to a generally accepted assumption, the probability of bond formation between ...
متن کاملStandardization of an Enzyme-Linked Immunosorbent Assay for Detection of Infectious Bronchitis Virus Antibody.
An indirect enzyme–linked immunosorbent assay (ELISA) was developed for screening of antibody to avian infectious bronchitis virus (IBV). Antigen was prepared from whole-purified IBV Massachusetts serotype (BR 801 strain). Optimum dilution with minimum background for antigen concentration, rabbit anti-chicken conjugate and sera in developed ELISA was determined 0.1μg/ml, 1:3000 and 1:100, respe...
متن کاملIdentification of Two Epitopes on the Outer Surface Protein A of the Lyme Disease Spirochete Borrelia burgdorferi
A murine IgM monoclonal antibody (MA-2C6) with κ-light chains directed against an antigenic determinant of outer surface protein A (OspA) of the Lyme disease spirochete, Borreliaburgdorferi, is produced. This antibody could bind specifically to OspA antigen of several isolates of B. burgdorferi, but not to the non-Lyme disease bacteria such as T. pallidum and B. hermsii. Antibody MA-2C6 was pur...
متن کاملProduction and Characterization of a Monoclonal Antibody against an Antigen on the Surface of Non-Small Cell Carcinoma of the Lung
Background: Lung carcinoma is a multiple type cancer comprising of small cell and non-small cell carcinomas (NSCLC). For therapeutic and diagnostic purposes, serum monoclonal antibodies have been produced against lung cancer. Objective: To charac-terize a murine monoclonal antibody (ME3D11) reactive with human NSCLC. Methods: A murine monoclonal antibody (ME3D11) reactive with human NSCLC was s...
متن کاملThermodynamic projection of the antibody interaction network: The fountain energy landscape of molecular interaction
The adaptive humoral immune system of vertebrates functions by evolving a huge repertoire of binding proteins, which target potentially all molecules that come into contact with developing B cells. The key to endowing these binders with immunological activity is the adjustment of antibody structure and affinity against molecular targets. As a result, antibodies with a wide range of affinities a...
متن کامل